
Combinatorial and Exploratory Creativity in Procedural
Content Generation

Joris Dormans
Amsterdam University of Applied Sciences

Duivendrechtsekade 36-38
Amsterdam, The Netherlands

j.dormans@hva.nl

Stefan Leijnen
Amsterdam University of Applied Sciences

Duivendrechtsekade 36-38
Amsterdam, The Netherlands

s.leijnen@hva.nl

ABSTRACT
Procedural content generation aims to algorithmically pro-
duce creative solutions to game design challenges. This pa-
per investigates how computational creativity theory can be
applied to improve current PCG tools and techniques. It
suggests that content generation may be considered as a
dual process: a generation step to create variety and a res-
olution step to transform the output of the generation into
a coherent and useful configuration. Separating these two
steps facilitates the design of PCG algorithms and impacts
the design of PCG tools.

1. INTRODUCTION
Procedural content generation (PCG) for games is a fast
evolving discipline. Academic research constantly tries to
push the boundaries of the field by improving techniques
based on cellular automata [6], transformational grammars
[3], evolutionary algorithms [13], or answer set programming
[10]. Researchers also have explored the way procedural
content generation can be used to create smart, ”mixed-
initiative” design tools to boost developer productivity [11,
9], automate the exploration of design space [8] or generate
rhetorical mechanics [14], to name just a few examples.

In most (if not all) applications of procedural content gen-
eration the computer is responsible for finding solutions to
design problems posed by the game’s context, player’s ac-
tion, or designer’s direction. In general, algorithms that can
come up with the most ’creative’ solutions will be consid-
ered best. In this case, we understand creative solutions
to be fast and make sense within the context of the game,
while they are still able to surprise both players and design-
ers. This paper explores what it means for an algorithm
to be creative, and how a more thorough understanding of
artificial creativity can guide the design of new procedural
content generation algorithms and tools. The paper sketches
a new approach to procedural content generation that splits
the creative process into two separate steps. Two simple
experiments illustrate how this approach can be applied to

procedural content generation. In the final section, the pa-
per discusses how this approach can be used to improve
automated game design tools that use procedural content
generation techniques.

2. DESIGNING FOR CREATIVITY
Creative computational systems are often modeled after evo-
lutionary processes, in which predefined sets of parameters
are optimized in accordance with a selection function [5].
When these systems are used in PCG design tools, the choice
of parameters and selection function becomes an optimiza-
tion problem of its own: the designer of creative systems is
required to balance out several features, such as

1. The size and structure of the solution space

2. The method for generating new solutions

3. The amount of time available for finding a sufficient
solution

4. The criteria for deeming a solution sufficient

This paper deals with the transition from combinatorial to
exploratory creativity: how can game designers develop pro-
cedural generation tools that go beyond merely permutating
a set variables, while maintaining scalability and tractabil-
ity? In computational creativity research, a distinction is of-
ten made between combinatorial creativity (combination of
two previously unconnected elements) and exploratory cre-
ativity (exploration of an established conceptual space or
style)[2, 7]

A second useful definition is to discern between novelty and
usefulness [1]. These terms are reflected in the optimiza-
tion design problem outlined above (i.e. how are new so-
lutions generated? (novelty) What constitutes a solution?
(usefulness)). This suggests that the generation of novelty
and the generation of usefulness might be split into two dif-
ferent algorithms, and that the combination of those algo-
rithms alongside the human design process allow for opti-
mization of design at a higher level. At this level, the par-
ticular combination of quantitative factors (e.g. algorithm
execution time, computational memory, human design time)
and qualitative factors (i.e. novelty, usefulness) determine
whether the creative process is combinatorial or exploratory.
In the approach taken here, a simple algorithm (the gen-
eration step) is responsible for generating a wide variety of



data using a simple combinatorial logic. A second algorithm
(the resolution step) is responsible for reorganizing the data
into usable content for the game. Together, these two steps
cooperate to push the creativity of the algorithm towards
exploratory creativity.

Dividing the process into two steps with a clear division
of responsibilities between them, has four important advan-
tages:

1. The generation step becomes trivial to design and im-
plement. In ideal situations any random combination
will do, and in practice only a few simple constraints
need to be taken into account.

2. The novelty of the produced content can be determined
early on and before the computationally more expen-
sive resolution algorithm is executed.

3. The designer of the generation algorithm only has to
focus on specifying the structures that are allowed by
the game. The designer does not have to specify all
the possible combinations of structures, or how these
combinations are to be generated.

4. The generation algorithm can be easily replaced by
a different source of novelty. For example, it can be
handcrafted by a designer, or produced in response to
player performance.

3. EXPERIMENTS
Previous research into procedural content generation has led
to the development of Ludoscope. Ludoscope is an exper-
imental program that uses transformational grammars to
generate content. It allows designers to create different types
of grammars (string grammars, graph grammars, tile gram-
mars, and shape grammars), and set up different recipes to
generate content tailored towards a particular game. An im-
portant design feature of the program is its ability to split
procedural content generation into multiple steps. Each step
can be specified by different grammars, and produces differ-
ent models that represent a game’s content during various
stages of its generation. Ludoscope’s multi-step grammar-
based operations and its relation to model driven engineer-
ing as general approach to procedural content generation has
been reported previously [3, 4].

Initially, no changes to Ludoscope were needed to set up a
number of experiments to test our assumptions about simple
generation of novelty, combined with a more sophisticated
resolution algorithm to generate a useful data set. The first
experiment used a simple tile based grammar to generate
dungeons that might be used in a roguelike game. The
generation step simply produced a tile map randomly filled
with walls and open spaces, except on the borders, which
would always be walls (see figure 1). For this experiment,
the chance that a tile (other than those on the edges) was
set to a wall was 40%. The resolution step applies a simple
transformation grammar to structure the random set into
something that is more usable for a game (see figure 2). It is
interesting to note that the results of the resolution slightly
differ as the rules in the transformation grammar are applied
randomly by selecting one possible transformation from all

Figure 1: Randomly generated set of walls and open
spaces to create a dungeon.

w w w w w w w w w w w w w w w w

w o o o w w w o o o o o o w o w

w o o o o w w w w w o o o w o w

w w o w o o o o w w o o o w o w

w o o o o o o o w w o o o w o w

w o o o o o o o w w o o o w o w

w o o o o w o o w w o o o w w w

w o w o o w o o o w o o o w w w

w o w o o o o o o w o o o o o w

w o o o o w w o o w o w w o o w

w o o w o w w o o w o o o o o w

w o o w o w w o o w o o o o o w

w o w w o o o o o w o w w w w w

w o w w o o w o o w o o o w w w

w o o o o o w o o o o w o o w w

w w w w w w w w w w w w w w w w

w w w w w w w w w w w w w w w w

w o o o w w w w o o o o o w o w

w o o o o o w o o o o o o w o w

w w o w o o w w w w w o o w o w

w o o o o o o o w w o o o w o w

w o o o o o o o w w o o o w w w

w o o o o w o o w o o o o o w w

w w o o o w o o w o o o o o w w

w w o o o o o o w w o o o o w w

w o o o o w w o o w o w w o o w

w o o w o w w o o w o o o o o w

w o o w o w w o o w o o o o o w

w w o w o o o o o w o w w w w w

w w o w o o w o o w o o o o w w

w o o o o o w o o o o w o w w w

w w w w w w w w w w w w w w w w

w w w w w w w w w w w w w w w w

w o o o w w w o w o o o o w o w

w o o o o o o o w w o o o w o w

w w o w o w w o w w o o o w o w

w o o o o o o o w w o o o w o w

w o o o o o o o w w o o o w o w

w o o o o w o o w w o o o w w w

w o w o o w o o w o o o o o w w

w o w o o o o o w o o o o o w w

w o o o o o o o w o o w w o o w

w o o w w w w w w o o o o o o w

w o o o w o w o o o o o o o o w

w w w w w o o o w w w w w w w w

w w o o o o w o o o o o o o w w

w o o o o o w o o o o w o w w w

w w w w w w w w w w w w w w w w

w w w w w w w w w w w w w w w w

w o o o w w w w o o o o o w o w

w o o o o o o o o w o o o w o w

w w o w o w w w w w o o o w o w

w o o o o o o w w w o o o w o w

w o o o o o o o o w o o o w o w

w o o o o w o w w w o o o w w w

w o w o o w o o o o o o o o w w

w o w o o o o o w o o o o o w w

w o o o o o o o w o o w w o o w

w o o w w w w w w o o o o o o w

w o o w o w w o o o o o o w o w

w w o w o o o o w w w w o w o w

w w o w o o w o o o o o o w w w

w o o o o o w o o o o w o w w w

w w w w w w w w w w w w w w w w

Figure 2: Sample results after the application an
exploratory grammar to create more structure.

possible transformations every step. However, they do not
differ as much as one might expect from a random applica-
tion of transformation rules: the grammar converges on a
number of stable solutions.

In many ways, the grammar for the resolution step acts as
a cellular automaton: locally defined rules, depending on a
tile’s neighbors, change open spaces to walls and vice versa.
However, it is important to note that the grammar used in
the resolution step does not change the number of walls and
open spaces as cellular automata would: open spaces and
walls might swap places, but their respective numbers do not
change. This feature is important when the same techniques
are used to generate other elements in the dungeon at the
same time. For example, when the number of monsters,
doors and traps is determined during the same generation
step.

The second experiment involves the generation of lock and
key mission structures. In this case the generation step cre-
ates a string of tasks. The string always starts with an ”en-
trance”and ends with a ”goal” to represent the start end end
points for the level. In addition, the first task is always a key
and the last task is always a lock. This guarantees that any
lock is preceded by at least one key and any key is followed
by at least one lock. The intermediate tasks are randomly
set to contain locks, keys or other task with probabilities
of 25%, 25% and 50% (see figure 3). Next, the resolution
step generates a structure in which each key is associated to
at least one lock (and vice versa), and in which the initial
sequence of locks, keys and other tasks is preserved. Figure



Figure 3: Randomly generated mission containing
locks and keys (E = entrance, G = goal, L = lock,
K = key, R = empty room).

Figure 4: Sample result after the application an
resolution grammar to create a spatial structure in
which the mission of figure 3 is likely traversal. In
this diagram green arrows indicate which keys un-
lock which locks, multiple keys might be required to
unlock a single lock.

4 represents the outcome of this step. As with the previous
experiment, the grammar for the resolution step does not
change the number or types of nodes. It only changes their
connections.

An important difference between this experiment and the
previous experiment is that in this case the resolution step
really does produces even fewer solutions for a particular
generated set of locks and keys. This is guaranteed by exe-
cuting each individual rule in the resolution grammar until
they can no longer be applied to the the mission structure.
In most cases the generated structure is always the same:
for each input there is one result.1

A notable outcome of the second experiment is the ease with
which the grammars generate a wide variety of different mis-
sion structures. The resolution grammar does not dictate
how many keys are required to open a single lock, or how
often it can be used to open multiple locks. Previous ex-
periments with lock and key generation grammars required
much more sophisticated grammars [3], yet did not generate
the same variety of possible lock and key structures.

4. TAILORING PCG TOOLS
One important result of the new approach to procedural con-
tent generation sketched in this paper is a redesign of Lu-
doscope. Ludoscope originally was first and foremost a tool
that helps designers create transformation grammars and
experiment with different ways of execute multiple transfor-
mations. It was mostly relevant as a tool to design proce-
dural content generation procedures for games. By explic-
itly supporting generation and resolution steps into this pro-
cess, Ludoscope changed into a tool that fits in with ”mixed-
initiative”design tools [11], making it more relevant for game

1The grammar of this experiment only generates different
results if its input contains multiple keys followed by multi-
ple locks.

Figure 5: Latest version of Ludoscope featuring in-
put and output channels.

development as a generic content production tool.

The most prominent change is the creation of input and
output channels in the tool’s main window (see figure 5). A
designer is able to modify the model in the input channel
(in the top half). Ludoscope uses that input to create an
output. The output can be the result of the execution of a
single transformation grammar, or a more complex proce-
dure specified by a recipe that is able to execute multiple
grammars and apply other special operations such as con-
verting a graph to a figure consisting of two-dimensional
shapes. Depending on the speed of the transformation, the
output can be generated in response to any change in the
input in real time.

For example, the output generated in figure 5 might repre-
sent a simple level for a platform game. In this case the de-
signer specified the location of platforms in the input chan-
nel, and the transformation grammar fills in the details to
create the complete level. In this case the designer exe-
cutes the generation step manually and Ludoscope responds
by filling the details; it executes the resolution step. This
set-up allows a designer to explore different possibilities for
distribution of platforms much faster than would normally
be possible. In additions, grammars can be designed in such
a way that it takes into account the distance a player might
be able to jump in order to make sure the level remains
playable. At the moment of writing we have only started to
explore the possibilities this new approach brings.

Distinguishing between generation and resolution steps dur-
ing content generation also makes it easier to change the
source of variety for the algorithm. The variety can be de-
liberately designed manually, as is the case in Ludoscope.
In addition, as was illustrated with the experiments above,
simple random selection of elements already works if the
resolution step is powerful enough to deal with (almost) all
possible combinations. An options that is not explored in



detail in this paper is to use player input to generate levels.
This is the case in the Infinite Mario experiment [12]. In this
game, the locations where players jump, pick-up coins, or de-
feat enemies, are recorded and used as an input to generate
the next the next level. Where in the original experiment,
many weird and arguably less useful levels were generated
in response to player actions, by following the player input
with a resolution step, a much more consistent and playable
game might emerge.

Furthermore, generation and resolution steps can be embed-
ded within Ludoscope’s original design philosophy of chain-
ing transformations to break down the content generation
into multi-step, feed-forward process [4]. In this case the
output of a transformation serves as the input of the next
transformation. In contrast to the previous approach, the
new approach suggest that each generation step is followed
by a resolution step and each resolution step is followed by
a new generation step. In practice, this could mean that
the first two steps generate a simple dungeon (for example
the steps that were used to generate the dungeons in the
first experiment) and are followed by a new generation step
(for example to add traps, monsters and treasure) which in
turn is followed by a new resolution step to make sure that
the randomly added content is useful (for example monsters
move to guard treasure, traps move to narrow passages, and
so on). It is even possible that some generation steps are ex-
ecuted automatically, while others are based on user input.
In the case of a process where designers can make changes
to multiple steps in the process, this creates difficulties with
reapplying changes that are made later in the process over
changes that where made later in time but earlier in the
process. The problem is to allow designers to edit multi-
ple models that represent different perspectives on the same
artifact [15]. It currently remains one of the more pressing
research questions for the further development of Ludoscope.

5. CONCLUSIONS
Applying findings from the field of computational creativity
to procedural content generation has yielded a number of in-
teresting results. Breaking down the content generation al-
gorithms into generation and resolution steps facilitates the
design of procedural content generation algorithms. Gener-
ation and resolution steps can be applied to a wide variety
of procedural content generation techniques. In this paper
the focus was on a number of different grammar based ap-
proaches. However, cellular automata and evolutionary al-
gorithms might equally benefit from separate generation and
resolution steps. Evolutionary algorithms might be applied
to generate interesting inputs before they are forwarded to
a resolution algorithm.

This approach offers opportunities to determine the novelty
and usefulness of a generated solution early on, before the
more computationally expensive resolution step is executed.
This can speed up the generation procedure as a whole con-
siderably. Ideally the resolution step is designed not to con-
verge or diverge any further, but to stabilize the variety.
This makes the resolution highly controllable and suggests
new opportunities to create mixed initiative design tools.
In this case, designers are responsible for creating new con-
tent and the tools automatically resolve the designer’s input
according the game’s constraints.

6. REFERENCES
[1] M. Boden. Allen newell and j. g. shaw and herbert a.

simon. In H. E. Gruber, G. Terrell, and
M. Wertheimer, editors, Contemporary Approaches to
Creative Thinking, pages 63–119. Atherton, New York,
NY, 1963.

[2] M. Boden. The Creative Mind: Myths and
Mechanisms. Routledge, New York, NY, 2004.

[3] J. Dormans. Adventures in level design: Generating
missions and spaces for action adventure games. In
Proceedings of the Procedural Content Generation
Workshop 2010, Monterey, CA, 2010.

[4] J. Dormans. Level design as model transformation: A
strategy for automated content generation. In
Proceedings of the Procedural Content Generation
Workshop 2011, Bordeaux, France, 2011.

[5] J. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, 1992.

[6] L. Johnson, G. N. Yannakakis, and J. Togelius.
Cellular automata for real-time generation of infinite
cave levels. In Proceedings of the Foundations of
Digital Games Conference 2010, Monterey, CA, 2010.

[7] D. Novitz. Creativity and constraint. Australasian
Journal of Philosophy, 77:67–82, 1999.

[8] A. Pantaleev. In search of patterns: Disrupting rpg
classes through procedural content generation. In
Proceedings of the Procedural Content Generation
Workshop 2012, Raleigh, NC, 2012.

[9] R. Smelik, T. Turenel, K. J. de Kraker, and
R. Bidarra. Inegrating procedural generation and
manual editing of virtual worlds. In Proceedings of the
Procedural Content Generation Workshop 2010,
Monterey, CA, 2010.

[10] A. M. Smith and M. Mateas. Answer set programming
for procedural content generation: A design space
approach. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3):187 –200, sept.
2011.

[11] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
mixed-initiative level design tool. In Proceedings of the
Procedural Content Generation Workshop 2010,
Monterey, CA, pages 209–216, 2010.

[12] J. Togelius, E. Kastbjerg, D. Schedl, and G. N.
Yannakakis. What is procedural content generation?
mario on the borderline. In Proceedings of the
Procedural Content Generation Workshop 2011,
Bordeaux, France, 2011.

[13] J. Togelius, M. Preuss, and G. N. Yannakakis.
Towards multiobjective procedural map generation. In
Proceedings of the Foundations of Digital Games
Conference 2010, Monterey, CA, 2010.

[14] M. Treanor, B. Blackford, M. Mateas, and I. Bogost.
Game-o-matic: Generating videogames that represent
ideas. In Proceedings of the Foundations of Digital
Games Conference 2012, Raleigh, NC, 2012.

[15] R. Walter and K. Neuwald. Calliope-d: An authoring
environment for interactive dialog. In H. Reiterer and
O. Deussen, editors, Mensch & Computer 2012:
interaktiv informiert - allgegenwärtig und
allumfassend!?, pages 409–418, MÃijnchen, 2012.
Oldenbourg Verlag.


