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ABSTRACT

The EU FP7 ICT Project ASC-INCLUSION aims at devel-
oping ICT solutions to assist children affected by Autism
Spectrum Conditions (ASC), in order to monitor their be-
haviour while playing with an interactive serious game that
will help them in understanding and reproducing emotions.
The complete framework will analyse the voice, the face and
the body of the player to have a general description of the
emotion the child is feeling/trying to play. In this work the
focus is on the body movement analysis. A set of 2D and
3D features is introduced and Dictionary Learning is de-
scribed as a possible method to help classifying emotions.
Preliminary results are shown to assess the importance of
the studied features in solving the problem.

Keywords
body gesture analysis, motion features, motion capure sys-
tems, RGB-D cameras, dictionary learning

1. INTRODUCTION

This work is part of the EU FP7 ICT 3-years Project ASC-
INCLUSION, that aims at developing ICT solutions to assist
children affected by Autism Spectrum Conditions (ASC). In
particular, it focuses on the development of serious games to
support children to understand and express emotions. The
general ASC-Inclusion framework will be able to process fa-
cial expressions, voice, and full-body movement and gesture.
Automatic monitoring of children behaviour in ecological en-

*This work has been developed inside the InfoMus Lab in
Casa Paganini, Piazza di Santa Maria in Passione 34, Genoa,
Italy

vironments (e.g., their home) is an important component to
detect their emotional state and stimulate them to interact
socially. The proposed framework will monitor the ASC chil-
dren while they are interacting with other people or playing
serious games and will evaluate their ability to express and
understand emotions. Then the system will try to help the
children improve their knowledge of emotions using interac-
tive multimodal feedback. The whole system is described in
Figure 1 [20]; the module marked in red is the part that will
be described in this paper.

State of the art research in emotion recognition mainly fo-
cuses on facial expression or voice analysis. The movements
that involve the entire body also contribute to the inference
of distinct emotions [8, 27, 7, 9]. Research in experimental
psychology demonstrated how some qualities of movement
are related to specific emotions: for example, the fear brings
to contract the body as an attempt to be as small as pos-
sible, surprise brings to turn towards the object capturing
our attention, joy may bring to movements of openness and
acceleration of forearms toward the high [5]. Body turning
away is typical of fear and sadness; body turning towards is
typical of happiness, anger, surprise; we usually spread out
when we are happy, angry or surprised; we can either move
fast (fear, happiness, anger, surprise) or slow (sadness).

In [8] de Meijer presents a detailed study of how the body
movements are related to the emotions. He individuates
the following dimensions and qualities: Trunk movement:
stretching - bowing; Arm movement: opening - closing; Ver-
tical direction: upward - downward; Sagittal direction: for-
ward - backward; Force: strong - light; Velocity: fast - slow;
Directness: direct - indirect.

Those dimensions and qualities can be found in different
combinations in the different emotions. For instance a joy-
ful feeling could be characterized by a strong Force, a fast
Velocity and a direct trajectory but it could have a Light
force as well, or be an indirect movement. For a more de-
tailed description of the study, please see [8].

This paper focuses on the automated emotions recognition
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Figure 1: A scheme of the ASC-Inclusion Project,
with a focus on the part that will be analysed in this

paper.

starting from entire body movement. We base our research
on the previously mentioned studies from experimental psy-
chology (de Meijer[8], Wallbott [27], Boone & Cunningham
[5]) and from humanistic theories (Laban effort [15, 14]).
We start from a detailed analysis of full-body movement,
by means of movement data recordings using professional
grade optical motion capture systems (e.g., Qualysis[2]) and
video cameras. Once refined, the developed emotion anal-
ysis algorithms are applied on low-cost (and less precise)
RGB-D sensors (e.g., Kinect[1]). The adoption of low-cost
measuring devices will enable us to integrate our analysis
techniques in serious games supporting autistic children to
learn to recognize and to express emotions, a main goal of
the ASC-INCLUSION EU ICT Project. In the following
sections we will introduce the set of movement features that
we propose for emotion recognition (Section 2); then, we
propose a method to represent the extracted features in or-
der to exploit the information they carry to perform emo-
tion recognition (Section 3); finally we present preliminary
results on feature extraction performed on a dataset of 3D
user tracking data created filming actors expressing emo-
tions (the ASC-Inclusion Emotion Video Repository) (Sec-
tion 3.3).

2. MOVEMENT FEATURES FOR EMOTION

RECOGNITION

Figure 2: A short sequence showing a 3D skeleton
movement.

We will now introduce a set of movement features that are
deemed important in the process of recognizing emotions.
The set we consider includes both features computed from
3D user tracking information, coming either from profes-
sional grade optical motion capture systems, composed by
several high resolution, high speed, infra-red cameras or low-
cost RGB-D cameras, and features computed from (2D) im-
age segmentation of the shape of the users.

2.1 3D Features

In this section we describe the features computed from three-
dimensional user tracking information captured by optical
motion capture systems. The following set of features in-
cludes indexes computed on the user’s movement and its
qualities, on the body posture and on the trajectories drawn
by the user’s joints. An example of input data can be seen
in Figure 2.

2.1.1 Kinetic Energy

The Kinetic Energy (K E) is the overall energy spent by the
user during movement, estimated as the total amount of dis-
placement in all of the tracked points. The amount of move-
ment activity is important for differentiating emotions. The
highest values of energy are related to anger, joy and terror
emotions, the lowest values correspond to sadness and bore-
dom. Camurri and colleagues [7] showed that the movement
activity is a relevant feature in recognizing emotion from the
full-body movement. For these reasons, we include in the set
of expressive features an approximated measure of the over-
all motion energy at time frame f. Given 3D user tracking
information, let v;(f) = /2 2(f) + 6:2(f) + 2:2(f) denote
the magnitude of velocity of the i-th tracked point at time
frame f. We then define K E(f), the Kinetic Energy index
at the frame f, as an approximation of the body kinematic
energy, the weighted sum of each joints’ kinetic energy:

KE(f) = 3 > maf(f) (1)

where m; is the approximation of the mass of the i-th joint.
The m values are computed starting from anthropometric
tables [19].



2.1.2  Spatial extent: Contraction Index and Density
The Contraction Index (3DCI), is a measure, ranging from
0 to 1, of how the user’s body occupies the space surround-
ing it. It is related to Laban’s “personal space” [15, 14]. The
Contraction Index is the normalized volume of the Bound-
ing Volume (BV') that is the volume of the minimum paral-
lelepiped surrounding the user’s body.

A different index of spatial extent is the density (DEI). The
density of a set of coordinates can be computed as follows:

1 n
DEI = — ; d; (2)

where d; is the Euclidean distance of the i-th point of the
set from the centroid C that is computed as the centre of
mass of the set.

2.1.3  Smoothness and Fluidity

In general, smoothness (SMI) is synonymous for “having
small values of high-order derivatives.” Wallbott [27], in his
analysis of qualitative aspects of psychiatric patients’ hand
movements, noticed that movements judged as smooth are
“characterized by large circumference, long wavelength, high
mean velocity, but not abrupt changes in velocity or accel-
eration (standard deviations of velocity and acceleration).
Thus, smooth movements seem to be large in terms of space
and exhibit even velocity”. We have therefore adapted Wall-
bott’s statements on the qualitative dimensions of under-
constrained arm movements and we have computed hands
trajectories curvature to identify trajectories’ smoothness.
Curvature (k) measures the rate at which a tangent vector
turns as a trajectory bends. It is defined as the reciprocal
of the radius (R) of the curve described by the trajectory:

k=— 3

" 3)
A joint’s trajectory following the contour of a small circle
will bend sharply, and hence will have higher curvature that
means low fluidity; by contrast, a point trajectory following
a straight line will have zero curvature so high smoothness.
The curvature is computed for a single point’s trajectory at
time frame f as follows:

Ti X T
T3 (4)
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ki =

where 7; is the velocity of the trajectory of the i-th point
and 7; is its acceleration.

The principle of the curvature can be applied to the move-
ment’s velocity and its variation in time to calculate the
movement’s fluidity (FI): high curvature of the speed’s tra-
jectory in time means low fluidity, while low curvature means
high fluidity. To calculate the fluidity we compute the cur-
vature of the tangential velocity of the desired joint as de-
scribed in equation (4).

2.1.4  Symmetry

Lateral symmetry (SI) of emotion expression has long been
studied in face expressions, resulting in valuable insights
about a general hemisphere dominance in the control of emo-
tional expression. An established example is the expressive
advantage of the left hemiface that has been demonstrated

with chimeric face stimuli, static pictures of emotional ex-
pressions with one side of the face replaced by the mirror im-
age of the other. A study by Roether et al. on human gait
demonstrated pronounced lateral asymmetries also in hu-
man emotional full-body movement [22]. Twenty-four actors
(with an equal number of right and left-handed subjects)
were recorded by using a motion capture system during neu-
tral walking and emotionally expressive walking (anger, hap-
piness, sadness). For all the three emotions, the left body
side moved with significantly higher amplitude and energy.
Perceptual validation of the results were conducted through
the creation of chimeric walkers using the joint-angle tra-
jectories of a half body to animate completely symmetric
puppets. Considering that literature pointed out the rele-
vance of symmetry as behavioural and affective features, we
address the symmetry of gestures and its relation with emo-
tional expression. It is measured evaluating limbs spatial
symmetry with respect to the body computed symmetry on
each of the available dimensions. Each partial symmetry (
SIxz, SIy, SIz) is computed from the position of the centre
of mass and the left and right joints (e.g., hands shoulders,
foots, knees) as described below:

(zri —2B) — (T*rRi — TB)

SIxi = i=0,1,..n (5

X |xr: — zB| + |TRi — TB] )

Iy, = WEeizys) ¥ WriZys) ;o4 ()
lyLi — ys| + lyri — ys|

Sl — (zi — 2B) + (2R — 2B) i=01,..n  (7)

|zLi — zB| + |2Ri — 2B|

where x5, yB, 2B are the coordinates of the centre of mass,
ZLi,YLi, ZL: are the coordinates of a left joint (e.g., left hand,
left shoulder, left foot, etc.) and xr;, yri, 2r: are the coordi-
nates of a right joint (e.g., right hand, right shoulder, right
foot, etc.). The three partial indexes are then combined
in a normalized index that expresses the overall estimated
symmetry.

2.1.5 Forward-backward leaning of the upper body

and relative positions

Head and body movements and positions are relied on as an
important feature for distinguishing between various emo-
tional expressions [23]. The amount of forward and back-
ward leaning JL; of the joint ¢ at the time frame f is mea-
sured by the velocity of the joint’s displacement along its
z component (depth) respective to the body position and
orientation.

(zB — zLi) — (2B — 2Ri) (8)

JL; =

2.1.6 Directness

Directness (DI) is one of the features that are deemed im-
portant in the process of recognizing emotions [8]. A direct
movement is characterized by almost rectilinear trajectories.
Movement Directness Index is computed from a trajectory
drawn in the space by a joint as the ratio between the eu-
clidean distance, calculated between the starting and the
ending point of the trajectory, and the trajectory’s actual
length. The directness index tends to assume values close to
1 if a movement is direct and low values (close to 0) other-
wise. In the case of three dimensional trajectories the index



is computed as follows:

V(e —25)? + (ys — ys)? + (z& — 25)?
kgl V(@ks1 — 26)? + (k1 — yr)? + (o1 — 26)2
9)

where xs, ys, zs are the coordinates of the trajectory’s start-
ing point, g, Y, 2 are the coordinates of the ending point
and N is the length of the trajectory.

DI =

2.1.7 Periodicity

Periodicity (PI) can be calculated using periodicity trans-
form [24], The periodicity transform decomposes sequences
into a sum of periodic sequences by projecting onto a set of
“periodic subspaces”. The Periodicity Transform looks for
the best periodic characterization of the length N sequence
x. The underlying technique is to project x onto some pe-
riodic subspace P,. This periodicity is then removed from
x leaving the residual r stripped of its p-periodicities. A
sequence of real numbers is called p-periodic if there is an
integer p with z(k + p) = « for all k integers.

2.1.8 Impulsiveness

In human motion analysis, Impulsiveness (II) can be de-
fined as a temporal perturbation of a regime motion (Heiser
et al. [13]]). Impulsiveness refers to the physical concept of
impulse as a variation of the momentum. This contributes
to define and reach a reference measure for impulsiveness.
From psychological studies (Evenden [11]; Nagoshi et al.
[21]), an impulsive gesture lacks of premeditation, that is,
it is performed without a significant preparation phase. We
developed an algorithm for impulsiveness detection, derived
by (Mancini and Mazzarino [18]), where a gesture is con-
sidered an impulse if it is characterized by a short duration
and high magnitude. In addition to the observations made
by Mazzarino and Mancini we included the condition that
to be recognized as impulsive a gesture has to be performed
without preparation. This includes sudden change of the
movement’s direction or intensity. The algorithm for the
computation of the impulsiveness index is the following;:

let 6t=0.45sec;
let energyThreshold=0.02;
if ( KE >= energyThreshold ) then
if (0 <= dt<=6t) then
evaluate energy peaks and movement direction;
if (the energy peak is solitaire in the given direction)
then
11 = KE;
end if
end if
end if

where dt is the gesture duration, K'E is the kinetic energy
and KF is the mean of the kinetic energy computed over
the gesture duration. The values of the proposed thresholds
have been empirically evaluated through perception tests on
videos portraying people who performed highly and lowly
impulsive gestures. Figure 3 shows an example of how the
Impulsiveness Index is computed.

2.2 2D+T features
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Figure 3: Example of Impulsiveness Index compu-
tation, a gesture is recognised as impulsive only if
executed with high energy, quick time and there is
a clear change in the movement qualities (change of
movement’s direction, isolated peak of energy)

In this section we summarize the 2D features extracted from
the image sequences. As a pre-processing step all the im-
ages have been segmented with a change detection algorithm
to discard the background portion, thus the measurements
are computed on the silhouette of the person moving in the
scene. These features are affected by acquisition and pre-
processing noise ad by numerical noise accumulated by the
image processing algorithms. Thus they are noisier than the
3D features. At the same time, they can be computed easily
starting from image sequences acquired by off-the-shelf low
cost cameras and do not require any particular acquisition
set up. All these considerations make them appealing for an
ecological set up.

2.2.1 Quantity of Motion and MHI/MHG

An important clue of an emotion is how much a person is
moving during the action, and the direction of the movement
itself. To compute the Quantity of Motion (QoM), in [4]
the authors propose to represent patterns of motions with
successive layering of image silhouettes. The Motion History
Image (M H1I) is the result of this layering, where every time
a new frame arrives the older silhouettes are decreased in
value and the new silhouette is added with the maximum
brightness (see Figure 4 for some examples). The Quantity
of Motion is computed as the weighted sum of the area of
the layered silhouette: a wide movement will have a higher
QoM than a small one. In [6], this technique is extended
in order to take into account the direction of the motion as
well, computing the gradients of the MHIs resulting from a
bunch of frames. In this case the authors talk about Motion
History Gradients (M HGs). These features can be used
to cluster the different videos in groups with high or low
quantity of motion and/or up or down movements.

2.2.2  Barycentre Tracking and 2D Contraction In-

dex

The motion of the barycentre (BMI) of a silhouette over
time gives a good idea of the way a person is moving. Figure
5 shows the trends of the BM I of the same actor performing
two different emotions (excitement and sadness). In the first
case, the barycentre spans a bigger area and its movements
are wider, while in the second case its movements are more
quiet.
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Figure 4: 10 frames layered silhouettes of a person
standing (a), waving arms (b) and jumping (c).

Cortraction Index Bavicerter Tracking

of the original data, maintaining only the actual, important
characteristics and discarding noise. Once the features are
decomposed with respect to the dictionary, the sparse vec-
tors containing the coefficients of the linear combination will
be used as input for classification algorithms.

3.1 Sparse Coding and Dictionary Learning

Let x be a signal in R?. We assume we can decompose it with
respect to a dictionary D in R¥ X that is a collection of K
basis signals, or atoms. In other words, there exists a vector
u in R¥ such that x ~ Du. In general K > d and we want
only a few atoms to be active in the linear combination, thus
we look for a sparse vector of coefficients. The solution to
our problem can be found minimizing with respect to u the

functional in (10), where the first term is the reconstruction
error, that ensures that our data are not distant from the
linear combination of atoms, and the ¢1-norm term is added
to enforce sparsity [25].

I — Dul|3 + Allul|x (10)

Having a batch of n data, the problem can be written in the

- following matrix form

Figure 5: Comparison of the Contraction Index
(left) and the Barycentre motion (right) of an ex-
cited person and a sad person

The 2D Contraction Index (2DCT) is a measure, ranging
from 0 to 1, related to the bounding region, i.e., the mini-
mum rectangle surrounding the person’s body. A low 2DC'T
will correspond to an open shape of the silhouette, with the
limbs stretching away from the body. Vice versa, a high
CI will carry the information of a close shape of the sil-
houette. Another important contribution is the variation of
the 2DC1T over time. Intuitively, if we are observing an ac-
tion of an excited person, we expect him or her to open and
close quickly the limbs, leading to a quickly varying 2DCI.
The variances, rather than the means, are more expressive
measures to discriminate between emotions.

3. ENHANCING THE FEATURES DESCRIP-
TIVE POWER

The features described so far will be the starting point for
the discrimination of the emotions. They will have to be
combined in order to obtain a descriptor that will allow the
system to understand automatically what the person in the
video is feeling. Assuming to have a set of labelled examples,
we aim at training the system so that it will be able to give a
correct answer when a new, unlabelled datum arrives. Since
it is not easy to get labelled data, both in terms of time and
accuracy (subjectivity) of the labelling, we want to max-
imise the amount of information that can be extracted from
the data, so we need a data representation that has got a
good descriptive power with respect to the problem. In the
next subsection we describe a technique, called Dictionary
Learning, that in an unsupervised fashion is able to extract
the intrinsic characteristics of the processed data. Its goal is
to learn a set of prototype signals from the data so that they
can be represented by means of a linear combination of such
basis. The final reconstruction will be a de-noised version

IX = DU+ A |lwilh

=1

(11)

The dictionary can be fixed analytically a priori, using for
example Wavelets or Discrete Cosine transform [17], or it can
be learned directly from data as for example in [16, 10]. To
this purpose, the functional in (11) can be minimized with
respect to both D and U. The problem is still convex fixing
one variable at a time and minimizing with respect to the
other, in an alternate scheme. The solution can be achieved
using for example the PADDLE algorithm (see [3]).

As stated before, we can now use the vectors u as data
representations and decompose new data with respect to D
(using only one step of the optimization).

3.2 Learning a Dictionary of Emotions

Once we have extracted all the features described in Section
2, our data will be represented by a set of time series describ-
ing the type of motion in 2D or 3D evolving over time. These
time series may be split in sub-sequences of a fixed length
which will be fed into a Dictionary Learning algorithm. For
example, suppose to have a feature vector x describing N
frame. We divide it into n sub-vectors describing j = %
frames each, resulting in an input matrix X € RI*™. We
then learn D € RI*¥ and U € R¥*"| so for each vector we
get a description matrix composed by the u vectors associ-
ated to each sub-vector. If we learn a dictionary for each
feature, we can then concatenate every descriptor to get a
global one.

Dictionary Learning and Sparse Coding techniques have been
successfully used in [12] for gesture recognition. In this work
the authors aim at recognizing an action extracted from a
set of predefined actions, performed by a human. To do so,
they extract features from both the motion and the appear-
ance of the performer and then they learn a dictionary for
each feature. The final descriptor used for the proper action



Table 1: Summary of the extracted features for the six basic emotions: anger, disgust, fear, happiness, sadness
and surprise

Anger Disgust Fear Happiness Sadness Surprise

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var
KE [ 1.7078 | 5.3978 | 0.7591 | 0.4834 | 1.5567 | 2.7342 | 1.5705 | 6.6397 | 0.7576 | 3.2839 | 1.1101 | 6.0395
3DCI | 0.4733 | 0.0315 | 0.6055 | 0.0191 | 0.6787 | 0.3536 | 0.4388 | 0.06032 | 0.6868 | 0.0167 | 0.4843 | 0.0351
DEI | 0.2904 | 0.0015 | 0.2743 | 0.0018 | 0.5731 | 0.3381 | 0.3026 | 0.0010 | 0.2676 | 0.0014 | 0.2724 | 0.0012
SI | 0.5751 | 0.0168 | 0.6178 | 0.0314 | 0.7500 | 0.3475 | 0.6274 | 0.2284 | 0.6872 | 0.0248 | 0.6892 | 0.0254
SMI | 0.1621 | 0.0243 | 0.1301 | 0.0145 | 0.4594 | 0.3505 | 0.5801 | 0.0119 | 0.9774 | 0.0118 | 0.0698 | 0.0267
FI | 0.6784 | 0.0617 | 0.7911 | 0.0364 | 0.7295 | 0.3942 | 0.7864 | 0.0315 | 0.7631 | 0.0660 | 0.6213 | 0.1122
JL | 0.0175 | 0.8710 | -0.0075 | 0.8701 | 0.3720 | 0.3435 | 0.0069 | 0.9067 | 0.0155 | 0.7869 | -0.0098 | 0.8081
DI | 0.8532 | 0.0754 | 0.5272 | 0.0681 | 0.3684 | 0.1698 | 0.8249 | 0.2789 | 0.4529 | 0.0347 | 0.7246 | 0.0781
PI | 0.2823 | 0.0019 | 0.2595 | 0.0012 | 0.5495 | 0.3383 | 0.2639 | 0.0017 | 0.2708 | 0.0010 | 0.2518 | 0.0010
II | 0.1438 | 0.0262 | 0.0203 | 0.0135 | 0.4010 | 0.3554 | 0.0372 | 0.0242 | 0.0123 | 0.0074 | 0.0970 | 0.0025
QoM | 1.5210 | 0.1011 | 1.3791 | 0.0579 | 1.517 0.146 | 1.4611 | 0.0772 | 1.3663 | 0.0562 | 1.5964 | 0.2604
2DCI | 0.4621 | 0.0057 | 0.4921 | 0.0057 | 0.4645 | 0.0047 | 0.4030 | 0.0122 | 0.4802 | 0.0050 | 0.4324 | 0.0101
BMI | 0.5128 | 0.0007 | 0.5179 | 0.0004 | 0.5631 | 0.0007 | 0.5105 | 0.0006 | 0.5341 | 0.0009 | 0.5355 | 0.0009

classification is the vector obtained by concatenating each
sparse code computed. The classification task is carried out
using Support Vector Machines (SVMs) [26] because the de-
scriptors are easily separable.

Our setting is slightly different from the one described above,
because we don’t have to recognize an action, but the differ-
ent shades of the motion/appearance allowing us to under-
stand the feelings of the person we are observing. Despite
this, we think that this model can help us building a space
where the dimensions of the different emotions lie and hav-
ing a set of easily separable representations.

3.3 Preliminary Results

We will now review some preliminary results on feature ex-
traction performed on videos and MoCap data coming from
recordings of actors expressing emotions through full body
movements. The dataset is composed by audiovisual and
3D MoCap recordings (captured by an RGB-D camera) of
seven actors (4 women and 3 men), each actor was asked to
interpret the six basic emotions (anger, disgust, fear, happi-
ness, sadness and surprise) for a short period of time then we
extracted movement features using the algorithms described
in Section 2. Table 1 shows some measurements about the
extracted features, namely the mean and the average over
time obtained for each of the described features measured
on different instances of each emotions and then averaged.
Despite the fact that mean and average produce a big loss
of information, the numbers obtained allow us to perform
a raw classification over the videos. For instance, Anger
have a high value for the Kinetic Energy, combined with a
huge variance, while Disgust does not. Happiness is another
emotion with hight mean/variance for the Kinetic Energy,
but these two emotions can be differentiated for a different
Impulsiveness, for instance. The table shows that the com-
bination of all the features described in Section 2 gives a
very rich descriptor that emphasizes the differences and the
similarities among the different emotions.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed a set of body movement’s fea-
tures that can be extracted from video/3D sequences to un-
derstand emotions automatically. These features are deeply
inspired by the psychological literature that have found dif-
ferent dimensions that allow a human being to interpret

what another subject is feeling.

We have also introduced a Machine Learning technique, named
Dictionary Learning, that we aim at exploiting in order to
have good responses on emotion classification.

The dataset used to test the feature extraction algorithms
isn’t suitable for the final objective of helping ASC children
to improve their ability of emotion expression because it is
based on adult actors recordings. At the moment, we are
creating a dataset composed by recordings of children (aged
from 5 to 10) that express natural emotions. This dataset
will be used for training the system for automatic emotion
recognition.
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